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Summary. In the last decade, the development in computer architectures has 
strongly influenced and motivated the evolution of algorithms for large-scale 
scientific computing. The unifying theme of the parallel algorithm group in 
CERFACS is the exploitation of vector and parallel computers in the solution of 
large-scale problems arising in computational science and engineering. The 
choice of a portable approach often leads to a loss in the average performance 
per computer with respect to a machine dependent implementation of the code. 
However, we show that, in full linear algebra as well as in sparse linear algebra, 
efficiency and portability can be combined. To illustrate our approach, we 
discuss results obtained on a wide range of shared memory multiprocessors 
including the Alliant FX/80, the IBM 3090E/3VF, the IBM 3090J/6VF, the 
CRAY-2, and the CRAY Y-MP. 
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1. Introduction 

We consider the direct solution of linear equations: 

Ax =b  

on parallel vector computers with a global shared memory. Designing a portable 
approach and understanding the influence of computer architecture on the 
performance of our codes is a very important aspect of our work. We thus 
analyse results obtained on a variety of computers including the eight processor 
Alliant FX/80, the three processor IBM 3090E/3VF, the six processor IBM 
3090J/6VF, the four processor CRAY-2, and the eight processor CRAY Y-MP. 
Even though our target computers all belong to the same class of shared memory 
multiprocessors, a more precise look at the architectures shows significant 
differences. Architectural differences will then be used to analyse the behaviour 
of the algorithms and to evaluate the impact of the architecture on the perfor- 
mance. 
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One key idea for combining efficiency with portability in linear algebra is to 
use basic linear algebra kernels [9]. These kernels are termed the BLAS, for Basic 
Linear Algebra Subprograms. Different levels of BLAS are available. The level 
terminology arises from the fact that if the vectors and matrices involved are of 
order N, the Level 1 BLAS provides vector computations of order O(N), the 
Level 2 BLAS provides matrix-vector computations of order O(N2), and the 
Level 3 BLAS provides matrix-matrix computations with O(N 3) operations. The 
architecture of shared memory parallel computers uses a hierarchy of memory 
(shared memory, local memory, vector registers . . . .  ). All the arithmetic compu- 
tations are performed at the top of this hierarchy. Therefore the key to efficiency 
is to keep active data as close as possible to the top of hierarchy. The use of 
higher Level BLAS provides this capability (see [10] and [11]) since the ratio 
number of operations over number of memory references increases with the level 
of the BLAS. One can consider that the main feature of BLAS is to mask the 
details of the architecture while providing high performance. The increased 
granularity of higher Level BLAS also allows more efficient parallelization. Note 
that parallel BLAS libraries should be implemented in the next few years, 
especially in conjunction with the forthcoming LAPACK Library [8]. A com- 
plete study of the efficient implementation of the Level-3 routines is available in 
[6] and [7] and we show, in this paper, how it can be used to design portable 
parallel software for linear algebra. 

2. Parallelization of full linear algebra 

We consider the solution of dense systems of equations Ax  = b. The idea is to 
express the L U  factorization in terms of a block algorith m using Level 3 BLAS 
[ 10]. To simplify our discussion we concentrate on the parallel implementation of 
one of the block L U  factorization, the KJI-SAXPY algorithm [6]. We have 
studied, in [7], two approaches for parallelizing the KJI-SAXPY algorithm. The 
simplest one exploits the parallelism only within the BLAS and will be referred 
to as parallel BLAS. Another possibility, which provides more parallelism, 
consists in parallelizing the blocked KJI-SAXPY algorithm. This will be referred 
to as the parallel L U  version of the algorithm. We compare, in Table 1, the 
parallelism obtained within the computational kernels with that obtained over 
the kernels. 

In Table 1, nproc designs the number of available processors. We also report 
the performance of various manufacturer supplied routines: PDGEFA from the 
Para-Linpack/FX Library on the AUiant, SGEFA from the CRAY SCILIB 

Table 1. Performance in Megaflops of the KJI-SAXPY algorithm on a full 1000-by-1000 system; 
manufacturer library performance is given as reference 

Multiprocessor version Manufacturer library 

Computer nproc 1 proc Parallel BLAS Parallel L U  Routine Mflops 

Alliant FX/80 8 11 61 57 PDGEFA 39 
IBM 3090J/6VF 6 89 294 418 DGEF 97 
CRAY-2 4 355 802 831 SGEFA 353 
IBM 3090E/3VF 3 62 132 182 DGEF 72 
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Library, and D G E F  from the IBM ESSL Library. These results show that 
though an optimal implementation depends on the characteristics of  the target 
computer, a portable and efficient code can be designed using Level 3 BLAS. The 
parallel version of L U  factorization provides, in average, only relatively small 
performance improvement over the version using only parallel BLAS. On both 
IBMs the gain in using a parallelized algorithm is evident but it is still an open 
question to decide whether it outweigh the loss of portability. On the Alliant 
FX/80, we can efficiently parallelize all the kernels, including Level 1 BLAS, 
using microtasking. Because of this, we notice in Table 1 that the parallel version 
of  the L U is not faster than the version using only parallel BLAS. The Level 3 
BLAS can be used to exploit parallelism and a very high uniprocessor perfor- 
mance can be combined with efficient parallelization. Of course, the performance 
obtained is closely linked to the efficiency of  the Level 3 BLAS available on the 
target computer. The efficient implementation of  BLAS depends on the availabil- 
ity of  low cost synchronization tools. The Alliant loop-level parallelism is a good 
example of this. In this case the parallelization of the BLAS based on loop-level 
parallelism is generally straightforward. 

3. Sparse L U factorization based on a multifrontal approach 

We then examine the case when A is sparse. Our algorithm is based on a 
multifrontal approach introduced by Duff and Reid (see [3] and [4]). One 
important feature of  the multifrontal method is that the nonzeros in the pivot 
row and column have already (in an assembly step) been gathered into a small 
dense submatrix, so called a frontal matrix, so that all updating operations can 
be performed with a regular stride. Furthermore, in a multifrontal approach, the 
independence of  the successive steps of  elimination due to sparsity is expressed in 
terms of  a dependence graph referred to as the elimination tree. Each edge of  the 
elimination tree corresponds to an assembly while each node is associated with 
an elimination process on a frontal matrix. 

The degree of  parallelism coming from the elimination tree is combined with 
a node level parallelism which exploits parallelism within Level 3 BLAS. The 
tuning of  the code is then handled through machine dependent parameters 
designed to take into account the main architectural differences between our 
target computers. 

We analyse, in Table 2, the influence of  parallelism within Level 3 BLAS on 
the global parallelism of the method. We report in Table 2 results obtained on 

Table 2. Speedup study of the multifrontal factorization on a medium-size sparse matrix 

1 proc. 3 procs 4 procs 6 procs 8 procs 
Mflops (1) (2) (1) (2) (1) (2) (1) (2) 

IBM 3090E 44 1.9 2.4 
CRAY-2 176 1.7 2.0 1.8 2.3 
IBM 3090J 60 1.9 2.5 2.0 3.0 2.1 3.8 
CRAY Y-MP 216 1.9 2.7 2.1 3.3 2.3 4.1 
Alliant FX/80 8 1.7 2.4 1.8 3.0 1.9 3.9 1.9 4.3 

In columns (1) we exploit only parallelism from the tree; in columns (2) we combine the two levels 
of parallelism 
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a medium-size sparse matrix (3948 x 3948) from the Harwell-Boeing set of 
sparse matrices [5]. Our vectorized version of the multifrontal code [2], leads to 
high uniprocessor performance (column (2) of Table 2) between 1/3 and 1/2 of 
the peak performance of a single processor. We notice, in Table 2, the impor- 
tance of the second level of parallelism which balances that lost from the 
elimination tree. The main reason why the additional level of parallelism is so 
effective is that the frontal matrices are always larger near the root and so the 
main benefit from nodal parallelism (through Level 3 BLAS) occurs just when 
the parallelism from the tree becomes less. 

Table 2 also illustrates some of the architectural differences between the 
target computers. We notice the good behaviour of the IBMs in a parallel mode. 
The second level of parallelism makes great use of the local cache of the IBMs, 
and we observe a small speedup improvement on three processors of the IBM 
3090J/6VF with respect to the IBM 3090E/3VF which is certainly due to the 
increase in the size of the local cache on the IBM 3090J/6VF. Obviously, 
although the CRAY-2 is a very powerful vector computer, it has some limita- 
tions in its use in a multiprocessor mode. The relatively poor speedup obtained 
on the CRAY-2 mainly comes from the increase in the memory access conflicts 
when running in a multiprocessor environment. The Alliant FX/80 is not a very 
impressive vector computer and we reach only a third of the peak performance 
on one processor. We also notice in columns (1) of Table 2 that the potential 
parallelism of the elimination tree is not fully exploited by the Alliant FX/80. In 
fact, on the Alliant FX/80, the management of parallel sections is based on 
binary semaphores which are managed by software and are quite costly. Further- 
more, the design of the shared cache memory of the Alliant FX/80 is also a 
possible reason for the increase in memory conflict in a multiprocessor environ- 
ment. However, because of the small minimum task granularity of the Alliant 
FX/80, good speedup is obtained with the second level of parallelism (see 
columns (2) in Table 2). Last, but not least, is the CRAY Y-MP on which we 
observe very high uniprocessor performance (more than two-thirds of the peak 
performance) combined with quite impressive speedup ratios. Note that this is 
the only computer on which we did not run in dedicated mode so that better 
performance in multiprocessor mode might be obtainable. On a full set of 
results, we can illustrate better the main architectural differences between our 
target computers [1]. 

With a multifrontal approach, the numerical factorization involves assembly 
steps and full factorization of the frontal matrices. The assembly step requires a 
small number of costly indirect floating-point operations and index-searching 
operations. Therefore, to further improve the run time, one can build an 
elimination tree which involves larger frontal matrices and less indirect opera- 
tions. One way to increase the ratio of the nodal work (full eliminations) and the 
work in the assembly is to allow amalgamation of adjacent nodes of the 
elimination tree. Although this can lead to more entries in the factors and more 
overall operations, it can be easily controlled in our portable code by a single 
parameter. This was exploited in [3] to improve vectorization on the CRAY-1 
and has been explored in depth in [1]. 

We notice, in Fig. 1, that the percentage decrease in the number of 
operations involved in the assembly process changes faster than the percentage 
increase in the total number of operations. We also observe, in Fig. 1, that the 
number of nodes in the elimination tree decreases sharply for low levels of node 
amalgamation. Moreover, the assembly process involves, on average, three 
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memory accesses per floating-point operation so that, even if we increase the 
overall number of  operations, we can obtain an improvement with this node 
amalgamation,~technique. This gain comes from the difference between the 
Megaflop rate of the assembly process and the Megaflop rate of  the elimination 
process [ 1]. 

Figure 2 shows that the five target computers are affected differently by node 
amalgamation. We notice that, in terms of maximum percentage improvement, 
the Alliant FX/80 and the CRAY Y-MP behave in an opposite way, the IBM 
3090E/3VF and the ETA 10-P perform identically, while CRAY-2 is slightly 
better. We obtain around 10% CPU time improvement on one processor of the 
IBM 3090E/VF, the ETA 10-P, and the CRAY-2 while on the Alliant FX/80 we 
only observe a 5 percent decrease in the CPU time. On the CRAY Y-MP, we 
reach more than 25 percent CPU time improvement. We observe in Fig. 2 that, 
after a certain amount of fill-in, we can go on amalgamating nodes on the 
CRAY-2, the ETA 10-P and the CRAY Y-MP, while, on the IBM 3090E/VF 
and the Alliant FX/80, the CPU time already starts to increase. Furthermore, in 
a parallel environment, we notice [1] that node amalgamation assists the paral- 
lelism of the method although this must be considered as a side effect of the 
amalgamation strategy and should not be in general expected. 

4. Concluding remarks 

We have studied the design of parallel software for linear algebra. Therefore, 
apart from parallel extensions to the Fortran language, we have run the same 
code on all our target computers. The choice of a portable approach often leads 
to a loss in the average performance per computer with respect to a machine 
dependent implementation of  the code. However, we have shown that, in linear 
algebra, one can combine portability and efficiency both in terms of  Megaftop 
rates and speedups on a large range of  shared memory multiprocessor machines. 
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The key idea for combining efficiency with portability has been the use of Level 
3 BLAS. In full L U  factorization, we have shown that parallel BLAS captures a 
large part of the potential parallelism of the block L U factorization. In sparse 
matrix factorization, the parallelization of the BLAS can be exploited to provide 
an additional level of parallelism that balances that coming from the elimination 
tree. We have also explained how we can enhance vectorization of the multifron- 
tal method by amalgamating nodes of the elimination tree, even if this amalga- 
mation introduces additional fill-in in the factors. A machine dependent 
parameter has been introduced to control the amount of modification of the 
elimination tree and we have noticed that its optimal value is a function of the 
ratio between the performance of indirect and direct operations of the target 
computer. Finally, we achieve 890 Megaflops for a sparse solver with a medium 
size sparse matrix on the CRAY Y-MP using 6 processors. 
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