
Theor Chim Acta (1991) 79:169-174 Theoretica
Chimica Acta
© Springer-Verlag 1991

Designing portable parallel software for linear algebra

P. R. Amestoy , M. J. Dayd~, and I. S. Duff
CERFACS, 42 Av. G. Coriolis F-31057 Toulouse Cedex

Received September 1, 1990/Accepted November 13, 1990

Summary. In the last decade, the development in computer architectures has
strongly influenced and motivated the evolution of algorithms for large-scale
scientific computing. The unifying theme of the parallel algorithm group in
CERFACS is the exploitation of vector and parallel computers in the solution of
large-scale problems arising in computational science and engineering. The
choice of a portable approach often leads to a loss in the average performance
per computer with respect to a machine dependent implementation of the code.
However, we show that, in full linear algebra as well as in sparse linear algebra,
efficiency and portability can be combined. To illustrate our approach, we
discuss results obtained on a wide range of shared memory multiprocessors
including the Alliant FX/80, the IBM 3090E/3VF, the IBM 3090J/6VF, the
CRAY-2, and the CRAY Y-MP.

Key words: Gaussian elimination - Sparse linear equations - Multifrontal
method - Vectorization - ParalMization - Elimination tree

1. Introduction

We consider the direct solution of linear equations:

Ax =b

on parallel vector computers with a global shared memory. Designing a portable
approach and understanding the influence of computer architecture on the
performance of our codes is a very important aspect of our work. We thus
analyse results obtained on a variety of computers including the eight processor
Alliant FX/80, the three processor IBM 3090E/3VF, the six processor IBM
3090J/6VF, the four processor CRAY-2, and the eight processor CRAY Y-MP.
Even though our target computers all belong to the same class of shared memory
multiprocessors, a more precise look at the architectures shows significant
differences. Architectural differences will then be used to analyse the behaviour
of the algorithms and to evaluate the impact of the architecture on the perfor-
mance.

170 P .R . Amestoy et al.

One key idea for combining efficiency with portability in linear algebra is to
use basic linear algebra kernels [9]. These kernels are termed the BLAS, for Basic
Linear Algebra Subprograms. Different levels of BLAS are available. The level
terminology arises from the fact that if the vectors and matrices involved are of
order N, the Level 1 BLAS provides vector computations of order O(N), the
Level 2 BLAS provides matrix-vector computations of order O(N2), and the
Level 3 BLAS provides matrix-matrix computations with O(N 3) operations. The
architecture of shared memory parallel computers uses a hierarchy of memory
(shared memory, local memory, vector registers). All the arithmetic compu-
tations are performed at the top of this hierarchy. Therefore the key to efficiency
is to keep active data as close as possible to the top of hierarchy. The use of
higher Level BLAS provides this capability (see [10] and [11]) since the ratio
number of operations over number of memory references increases with the level
of the BLAS. One can consider that the main feature of BLAS is to mask the
details of the architecture while providing high performance. The increased
granularity of higher Level BLAS also allows more efficient parallelization. Note
that parallel BLAS libraries should be implemented in the next few years,
especially in conjunction with the forthcoming LAPACK Library [8]. A com-
plete study of the efficient implementation of the Level-3 routines is available in
[6] and [7] and we show, in this paper, how it can be used to design portable
parallel software for linear algebra.

2. Parallelization of full linear algebra

We consider the solution of dense systems of equations Ax = b. The idea is to
express the L U factorization in terms of a block algorith m using Level 3 BLAS
[10]. To simplify our discussion we concentrate on the parallel implementation of
one of the block L U factorization, the KJI-SAXPY algorithm [6]. We have
studied, in [7], two approaches for parallelizing the KJI-SAXPY algorithm. The
simplest one exploits the parallelism only within the BLAS and will be referred
to as parallel BLAS. Another possibility, which provides more parallelism,
consists in parallelizing the blocked KJI-SAXPY algorithm. This will be referred
to as the parallel L U version of the algorithm. We compare, in Table 1, the
parallelism obtained within the computational kernels with that obtained over
the kernels.

In Table 1, nproc designs the number of available processors. We also report
the performance of various manufacturer supplied routines: PDGEFA from the
Para-Linpack/FX Library on the AUiant, SGEFA from the CRAY SCILIB

Table 1. Performance in Megaflops of the KJI-SAXPY algorithm on a full 1000-by-1000 system;
manufacturer library performance is given as reference

Multiprocessor version Manufacturer library

Computer nproc 1 proc Parallel BLAS Parallel L U Routine Mflops

Alliant FX/80 8 11 61 57 PDGEFA 39
IBM 3090J/6VF 6 89 294 418 DGEF 97
CRAY-2 4 355 802 831 SGEFA 353
IBM 3090E/3VF 3 62 132 182 DGEF 72

Designing portable parallel software for linear algebra 171

Library, and D G E F from the IBM ESSL Library. These results show that
though an optimal implementation depends on the characteristics of the target
computer, a portable and efficient code can be designed using Level 3 BLAS. The
parallel version of L U factorization provides, in average, only relatively small
performance improvement over the version using only parallel BLAS. On both
IBMs the gain in using a parallelized algorithm is evident but it is still an open
question to decide whether it outweigh the loss of portability. On the Alliant
FX/80, we can efficiently parallelize all the kernels, including Level 1 BLAS,
using microtasking. Because of this, we notice in Table 1 that the parallel version
of the L U is not faster than the version using only parallel BLAS. The Level 3
BLAS can be used to exploit parallelism and a very high uniprocessor perfor-
mance can be combined with efficient parallelization. Of course, the performance
obtained is closely linked to the efficiency of the Level 3 BLAS available on the
target computer. The efficient implementation of BLAS depends on the availabil-
ity of low cost synchronization tools. The Alliant loop-level parallelism is a good
example of this. In this case the parallelization of the BLAS based on loop-level
parallelism is generally straightforward.

3. Sparse L U factorization based on a multifrontal approach

We then examine the case when A is sparse. Our algorithm is based on a
multifrontal approach introduced by Duff and Reid (see [3] and [4]). One
important feature of the multifrontal method is that the nonzeros in the pivot
row and column have already (in an assembly step) been gathered into a small
dense submatrix, so called a frontal matrix, so that all updating operations can
be performed with a regular stride. Furthermore, in a multifrontal approach, the
independence of the successive steps of elimination due to sparsity is expressed in
terms of a dependence graph referred to as the elimination tree. Each edge of the
elimination tree corresponds to an assembly while each node is associated with
an elimination process on a frontal matrix.

The degree of parallelism coming from the elimination tree is combined with
a node level parallelism which exploits parallelism within Level 3 BLAS. The
tuning of the code is then handled through machine dependent parameters
designed to take into account the main architectural differences between our
target computers.

We analyse, in Table 2, the influence of parallelism within Level 3 BLAS on
the global parallelism of the method. We report in Table 2 results obtained on

Table 2. Speedup study of the multifrontal factorization on a medium-size sparse matrix

1 proc. 3 procs 4 procs 6 procs 8 procs
Mflops (1) (2) (1) (2) (1) (2) (1) (2)

IBM 3090E 44 1.9 2.4
CRAY-2 176 1.7 2.0 1.8 2.3
IBM 3090J 60 1.9 2.5 2.0 3.0 2.1 3.8
CRAY Y-MP 216 1.9 2.7 2.1 3.3 2.3 4.1
Alliant FX/80 8 1.7 2.4 1.8 3.0 1.9 3.9 1.9 4.3

In columns (1) we exploit only parallelism from the tree; in columns (2) we combine the two levels
of parallelism

172 P.R. Amestoy et al.

a medium-size sparse matrix (3948 x 3948) from the Harwell-Boeing set of
sparse matrices [5]. Our vectorized version of the multifrontal code [2], leads to
high uniprocessor performance (column (2) of Table 2) between 1/3 and 1/2 of
the peak performance of a single processor. We notice, in Table 2, the impor-
tance of the second level of parallelism which balances that lost from the
elimination tree. The main reason why the additional level of parallelism is so
effective is that the frontal matrices are always larger near the root and so the
main benefit from nodal parallelism (through Level 3 BLAS) occurs just when
the parallelism from the tree becomes less.

Table 2 also illustrates some of the architectural differences between the
target computers. We notice the good behaviour of the IBMs in a parallel mode.
The second level of parallelism makes great use of the local cache of the IBMs,
and we observe a small speedup improvement on three processors of the IBM
3090J/6VF with respect to the IBM 3090E/3VF which is certainly due to the
increase in the size of the local cache on the IBM 3090J/6VF. Obviously,
although the CRAY-2 is a very powerful vector computer, it has some limita-
tions in its use in a multiprocessor mode. The relatively poor speedup obtained
on the CRAY-2 mainly comes from the increase in the memory access conflicts
when running in a multiprocessor environment. The Alliant FX/80 is not a very
impressive vector computer and we reach only a third of the peak performance
on one processor. We also notice in columns (1) of Table 2 that the potential
parallelism of the elimination tree is not fully exploited by the Alliant FX/80. In
fact, on the Alliant FX/80, the management of parallel sections is based on
binary semaphores which are managed by software and are quite costly. Further-
more, the design of the shared cache memory of the Alliant FX/80 is also a
possible reason for the increase in memory conflict in a multiprocessor environ-
ment. However, because of the small minimum task granularity of the Alliant
FX/80, good speedup is obtained with the second level of parallelism (see
columns (2) in Table 2). Last, but not least, is the CRAY Y-MP on which we
observe very high uniprocessor performance (more than two-thirds of the peak
performance) combined with quite impressive speedup ratios. Note that this is
the only computer on which we did not run in dedicated mode so that better
performance in multiprocessor mode might be obtainable. On a full set of
results, we can illustrate better the main architectural differences between our
target computers [1].

With a multifrontal approach, the numerical factorization involves assembly
steps and full factorization of the frontal matrices. The assembly step requires a
small number of costly indirect floating-point operations and index-searching
operations. Therefore, to further improve the run time, one can build an
elimination tree which involves larger frontal matrices and less indirect opera-
tions. One way to increase the ratio of the nodal work (full eliminations) and the
work in the assembly is to allow amalgamation of adjacent nodes of the
elimination tree. Although this can lead to more entries in the factors and more
overall operations, it can be easily controlled in our portable code by a single
parameter. This was exploited in [3] to improve vectorization on the CRAY-1
and has been explored in depth in [1].

We notice, in Fig. 1, that the percentage decrease in the number of
operations involved in the assembly process changes faster than the percentage
increase in the total number of operations. We also observe, in Fig. 1, that the
number of nodes in the elimination tree decreases sharply for low levels of node
amalgamation. Moreover, the assembly process involves, on average, three

Designing portable parallel software for linear algebra 173

N u m b e r of nodes

50 3000
%

40
o 2500

c f 30
h
a o 20 2000
n P 10
g e
e r 0 1500

e
- 10

i t 1 0 0 0
n i -20

o
-30 n n 500

b s -40

1 5 ' % change in •
9 CPU t ime /

/
3

-~p I I I , ~,,~-~"~ I X - , i

- 9 ' v . - _ . . ~ . ~ O . . . - - - . /
• ~ u - ~ o _ _ O -

- 1 5 "

-21

iH ~ " HH -,..--...., i,_.. l i ~ HH ~ HI
-50 0 -27

Increasing amalgamation Increasing amalgamation

Fig. 1. Study o f the effect o f node amalgamat ion on the number o f bperat ions. • % change in the

to ta l n u m b e r o f ope ra t i ons ; [] % c h a n g e in the n u m b e r o f o p e r a t i o n s in the assembly ; • • - n u m b e r

o f n o d e s in the e l im ina t i on tree

Fig . 2. Sensi t ivi ty to n o d e a m a l g a m a t i o n . 1 p r o c e s s o r of: . • - C R A Y Y - M P ; • © - C R A Y - 2 ; x -

I B M 3090 /VF; . • - E T A 10-P; - • - A l l i an t F X / 8 0

memory accesses per floating-point operation so that, even if we increase the
overall number of operations, we can obtain an improvement with this node
amalgamation,~technique. This gain comes from the difference between the
Megaflop rate of the assembly process and the Megaflop rate of the elimination
process [1].

Figure 2 shows that the five target computers are affected differently by node
amalgamation. We notice that, in terms of maximum percentage improvement,
the Alliant FX/80 and the CRAY Y-MP behave in an opposite way, the IBM
3090E/3VF and the ETA 10-P perform identically, while CRAY-2 is slightly
better. We obtain around 10% CPU time improvement on one processor of the
IBM 3090E/VF, the ETA 10-P, and the CRAY-2 while on the Alliant FX/80 we
only observe a 5 percent decrease in the CPU time. On the CRAY Y-MP, we
reach more than 25 percent CPU time improvement. We observe in Fig. 2 that,
after a certain amount of fill-in, we can go on amalgamating nodes on the
CRAY-2, the ETA 10-P and the CRAY Y-MP, while, on the IBM 3090E/VF
and the Alliant FX/80, the CPU time already starts to increase. Furthermore, in
a parallel environment, we notice [1] that node amalgamation assists the paral-
lelism of the method although this must be considered as a side effect of the
amalgamation strategy and should not be in general expected.

4. Concluding remarks

We have studied the design of parallel software for linear algebra. Therefore,
apart from parallel extensions to the Fortran language, we have run the same
code on all our target computers. The choice of a portable approach often leads
to a loss in the average performance per computer with respect to a machine
dependent implementation of the code. However, we have shown that, in linear
algebra, one can combine portability and efficiency both in terms of Megaftop
rates and speedups on a large range of shared memory multiprocessor machines.

174 P .R. Amestoy et al.

The key idea for combining efficiency with portability has been the use of Level
3 BLAS. In full L U factorization, we have shown that parallel BLAS captures a
large part of the potential parallelism of the block L U factorization. In sparse
matrix factorization, the parallelization of the BLAS can be exploited to provide
an additional level of parallelism that balances that coming from the elimination
tree. We have also explained how we can enhance vectorization of the multifron-
tal method by amalgamating nodes of the elimination tree, even if this amalga-
mation introduces additional fill-in in the factors. A machine dependent
parameter has been introduced to control the amount of modification of the
elimination tree and we have noticed that its optimal value is a function of the
ratio between the performance of indirect and direct operations of the target
computer. Finally, we achieve 890 Megaflops for a sparse solver with a medium
size sparse matrix on the CRAY Y-MP using 6 processors.

References

1. Amestoy PR (1990) Factorization of large unsymmetric matrices based on a multifrontal
approach in a multiprocessor environment. PhD Thesis. CERFACS Report TH/PA/91/2

2. Amestoy PR, Duff LS (1989) Int J Supercomputer Appl 3(3):41
3. Duff LS, Reid JK (1983) ACM Trans Math Softw 9:302
4. Duff LS, Reid JK (1984) SIAM J Sci Stat Comput 5:633
5. Duff IS, Grimes RG, Lewis JG (1989) ACM Trans Math Softw 15:1
6. Dayd6 MJ, Duff LS (1989) Int J of Supercomputer Appl 3:40
7. Dayd6 MJ, Duff LS (1990) CERFACS report TR/TA/90/30
8. Demmel JW, Dongarra JJ, Du Croz J, Greenbaun A, Hammarling S, Sorensen DC (1987)

Prospectus for the development of a linear algebra library for high performance computers.
Report TM-97, Mathematics and Computer Science Division, Argonne National Laboratory

9. Dongarra JJ, Du Croz J, Hammarling S, Hanson RJ (1988) ACM Trans Math Softw 14:1 and
18

10. Dongarra JJ, Du Croz J, Duff LS, Hammarling S (1988a) ACM Trans Math Softw 16
11. Dongarra JJ, Du Croz J, Duff IS, Hammarling S (1988b) ACM Trans Math Softw 16

